Drug dosing is an important application of AI, which can be formulated as a Reinforcement Learning (RL) problem. In this paper, we identify two major challenges of using RL for drug dosing: delayed and prolonged effects of administering medications, which break the Markov assumption of the RL framework. We focus on prolongedness and define PAE-POMDP (Prolonged Action Effect-Partially Observable Markov Decision Process), a subclass of POMDPs in which the Markov assumption does not hold specifically due to prolonged effects of actions. Motivated by the pharmacology literature, we propose a simple and effective approach to converting drug dosing PAE-POMDPs into MDPs, enabling the use of the existing RL algorithms to solve such problems. We validate the proposed approach on a toy task, and a challenging glucose control task, for which we devise a clinically-inspired reward function. Our results demonstrate that: (1) the proposed method to restore the Markov assumption leads to significant improvements over a vanilla baseline; (2) the approach is competitive with recurrent policies which may inherently capture the prolonged effect of actions; (3) it is remarkably more time and memory efficient than the recurrent baseline and hence more suitable for real-time dosing control systems; and (4) it exhibits favorable qualitative behavior in our policy analysis.
translated by 谷歌翻译
Current technological advances open up new opportunities for bringing human-machine interaction to a new level of human-centered cooperation. In this context, a key issue is the semantic understanding of the environment in order to enable mobile robots more complex interactions and a facilitated communication with humans. Prerequisites are the vision-based registration of semantic objects and humans, where the latter are further analyzed for potential interaction partners. Despite significant research achievements, the reliable and fast registration of semantic information still remains a challenging task for mobile robots in real-world scenarios. In this paper, we present a vision-based system for mobile assistive robots to enable a semantic-aware environment perception without additional a-priori knowledge. We deploy our system on a mobile humanoid robot that enables us to test our methods in real-world applications.
translated by 谷歌翻译
我们提出了Zeroeggs,这是一个神经网络框架,用于语音驱动的手势生成,以零拍出样式控制。这意味着即使在训练过程中看不见的运动样式,也只能通过一个简短的运动剪辑来控制样式。我们的模型使用一个变性框架来学习样式嵌入,从而可以通过潜在的空间操纵或样式嵌入方式的混合和缩放来修改样式。我们框架的概率性质进一步使给定输入相同的各种输出的产生,以解决手势运动的随机性质。在一系列实验中,我们首先证明了模型对新的扬声器和样式的灵活性和概括性。然后,在一项用户研究中,我们表明我们的模型在运动,语音适当性和风格刻画方面的自然性,适当性和刻画的表现优于先前的最先进技术。最后,我们释放了包括手指在内的全身手势运动的高质量数据集,语音跨越了19种不同的样式。
translated by 谷歌翻译
数据增强是通过转换为机器学习的人工创建数据的人工创建,是一个跨机器学习学科的研究领域。尽管它对于增加模型的概括功能很有用,但它还可以解决许多其他挑战和问题,从克服有限的培训数据到正规化目标到限制用于保护隐私的数据的数量。基于对数据扩展的目标和应用的精确描述以及现有作品的分类法,该调查涉及用于文本分类的数据增强方法,并旨在为研究人员和从业者提供简洁而全面的概述。我们将100多种方法划分为12种不同的分组,并提供最先进的参考文献来阐述哪种方法可以通过将它们相互关联,从而阐述了哪种方法。最后,提供可能构成未来工作的基础的研究观点。
translated by 谷歌翻译
在许多机器学习的情况下,研究表明,培训数据的开发可能比分类器本身的选择和建模更高。因此,已经开发了数据增强方法来通过人为创建的培训数据来改善分类器。在NLP中,为提供新的语言模式的文本转换建立通用规则存在挑战。在本文中,我们介绍并评估一种适合于长期和短文的分类器的性能的文本生成方法。通过我们的文本生成方法的增强,我们在评估简短和长期文本任务时取得了令人鼓舞的改进。尤其是在小型数据分析方面,与NO增强基线和其他数据增强技术相比,在构建的低数据状态下,添加精度的提高到达15.53%和3.56%。由于这些构建制度的当前轨道并非普遍适用,因此我们还显示了几个现实世界中低数据任务(高达+4.84 F1得分)的重大改进。由于我们从许多角度(总共11个数据集)评估了该方法,因此我们还观察到该方法可能不合适的情况。我们讨论了在不同类型的数据集上成功应用我们的方法的含义和模式。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译